Accelerated Iterative Regularization via Dual Diagonal Descent
نویسندگان
چکیده
We propose and analyze an accelerated iterative dual diagonal descent algorithm for the solution of linear inverse problems with strongly convex regularization general data-fit functions. develop inertial approach which we both convergence stability properties. Using tools from inexact proximal calculus, prove early stopping results optimal rates additive data terms further consider more cases, such as Kullback--Leibler divergence, different type point approximations hold.
منابع مشابه
Transductive Classification via Dual Regularization
Semi-supervised learning has witnessed increasing interest in the past decade. One common assumption behind semi-supervised learning is that the data labels should be sufficiently smooth with respect to the intrinsic data manifold. Recent research has shown that the features also lie on a manifold. Moreover, there is a duality between data points and features, that is, data points can be classi...
متن کاملA Descent Method for Nonsmooth Variational Inequalities via Regularization
in this paper we propose a descent method for solving variational inequality problems where the underlying operator is nonsmooth, locally Lipschitz, and monotone over a closed, convex feasible set. The idea is to combine a descent method for variational inequality problems whose operators are nonsmooth, locally Lipschitz, and strongly monotone, with the Tikonov-Browder regularization technique....
متن کاملLasso Regularization Paths for NARMAX Models via Coordinate Descent
We propose a new algorithm for estimating NARMAX models with L1 regularization for models represented as a linear combination of basis functions. Due to the L1-norm penalty the Lasso estimation tends to produce some coefficients that are exactly zero and hence gives interpretable models. The novelty of the contribution is the inclusion of error regressors in the Lasso estimation (which yields a...
متن کاملRegularization Paths for Cox's Proportional Hazards Model via Coordinate Descent.
We introduce a pathwise algorithm for the Cox proportional hazards model, regularized by convex combinations of ℓ1 and ℓ2 penalties (elastic net). Our algorithm fits via cyclical coordinate descent, and employs warm starts to find a solution along a regularization path. We demonstrate the efficacy of our algorithm on real and simulated data sets, and find considerable speedup between our algori...
متن کاملRegularization Paths for Generalized Linear Models via Coordinate Descent.
We develop fast algorithms for estimation of generalized linear models with convex penalties. The models include linear regression, two-class logistic regression, and multinomial regression problems while the penalties include ℓ(1) (the lasso), ℓ(2) (ridge regression) and mixtures of the two (the elastic net). The algorithms use cyclical coordinate descent, computed along a regularization path....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Siam Journal on Optimization
سال: 2021
ISSN: ['1095-7189', '1052-6234']
DOI: https://doi.org/10.1137/19m1308888